
Formal Requirements for Key Distribution

Protocols

Paul Syverson and Catherine Meadows

Center for High Assurance Computing Systems

Naval Research Laboratory
Washington, DC 20375

USA

Abstract. We discuss generic formal requirements for reasoning about

two party key distribution protocols, using a language developed for spec-

ifying security requirements for security protocols. Typically earlier work
has considered formal analysis of already developed protocols. Our goal

is to present sets of formal requirements for various contexts which can

be applied at the design stage as well as to existing protocols. We use
a protocol analysis tool we have developed to determine whether or not

a speci�c protocol has met some of the requirements we speci�ed. We

show how this process uncovered a aw in the protocol and helped us
re�ne our requirements.

1 Introduction

Recently, there has been a growing interest in the development and use of formal

methods to analyze security properties of cryptographic protocols. Together with

this increased interest, there has been a growing recognition that it is not enough

to possess a means of formally specifying and analyzing a protocol; one must also

have a means of formally specifying the properties that a protocol must have.

One way of gaining greater assurance that one is specifying and verifying the

correct properties is to develop a formal requirements language that one can use

to de�ne the properties one wants to hold for the protocol. Although the use of

a formal requirements language will not guarantee by itself that one has thought

of all necessary protocol requirements, it will at least assist in understanding

and using the requirements.

In an earlier paper, [10], we set forth such a requirements language that

was intended for use with the NRL Protocol Analyzer, an automated tool for

specifying and analyzing cryptographic protocols. The Protocol Analyzer veri�es

that a protocol meets a set of requirements by checking that every possible run

of the protocol is one over which the requirements remain valid (unless of course

this is not so, in which case the Analyzer shows that instead). In other words,

the Protocol Analyzer functions as a semantic model checker with respect to

the requirements language. In that paper, we looked at a simple one-sided pure

authentication protocol to show how one could use the requirements language

to specify a number of di�erent requirements. And we showed how we could use



the Protocol Analyzer to prove that the protocol met the requirements set forth

in the language.

In this paper we provide further evidence of the usefulness of our language

by using it to specify more realistic protocols. In particular, we use the language

to de�ne requirements for two-party key distribution protocols with one or more

servers. These are the types of protocols that have received the most interest

in the veri�cation literature; so, it is useful to have a set of requirements for

comparison.

2 The Language

Our language contains a denumerable collection of constant singular terms, typ-

ically represented by letters from the beginning of the alphabet. We also have

a denumerable collection of variable terms, typically represented by letters from

the end of the alphabet. We also have, for each n � 1, n-ary function letters

taking terms of either type as arguments and allowing us to build up functional

terms in the usual recursive fashion. (We will always indicate whether a term

is constant or variable if there is any potential for confusion.) We have a de-

numerable collection of n-ary action symbols for each arity n � 1. These will

be written as words in typewriter script (e.g., accept). The �rst argument of

an action symbol is reserved for a term representing the agent of the action in

question. An atomic formula consists of an n-ary action symbol, e.g., `act' fol-

lowed by an n-tuple of terms. We have the usual logical connectives: :, ^, _,!,

and$, and also one temporal operator: 3- . Complex formulae are built up from

atomic formulae in the usual recursive fashion. (Note that this is only a formal

language, not a logic; hence there are no axioms or inference rules.)

In general, an action symbol will be of the following form. It will have four

arguments, the �rst representing the agent of the action in question, the second

representing the other principals involved in the action, the third representing the

words involved in the action, and the fourth representing the local round number

of the agent of the action, where a round number local to a principal identi�es

all actions pertaining to a single session as far as that principal is concerned.

Action symbols can describe such events as a principal sending a message, the

learning of a word by the intruder, or a principal's making a change to one or

more of its local state variables. An action symbol may map to more than one

event, and for a given event, there may be more than one action symbol mapping

to it. Requirements are stated in terms of conditions on traces of action symbols.

For example, we may require that an event indicated by an action symbol can

only take place if some event indicated by another action symbol has taken place

previously.

3 The NRL Protocol Analyzer

In this section we give a brief overview of the NRL Protocol Analyzer. More

complete descriptions may be found in [7, 6].



The NRL Protocol Analyzer is a software tool that can be used either to prove

theorems about security properties of cryptographic protocols, or to �nd aws if

the theorems turn out not to be true. The model used by the Protocol Analyzer is

an extension of the Dolev-Yao model [4]. We assume that the participants in the

protocol are communicating in a network under the control of a hostile intruder

who may also have access to the network as a legitimate user or users. The

intruder has the ability to read all message tra�c, destroy and alter messages,

and create his own messages. Since all messages pass through the intruder's

domain, any message that an honest participant sees can be assumed to originate

from the intruder. Thus a protocol rule describes, not how one participant sends

a message in response to another, but how the intruder manipulates the system

to produce messages by causing principals to receive certain other messages.

As in Dolev-Yao, the words generated in the protocol obey a set of reduction

rules (that is, rules for reducing words to simpler words), so we can think of

the protocol as a machine by which the intruder produces words in the term-

rewriting system. Also, as in Dolev-Yao, we make very strong assumptions about

the knowledge gained when an intruder observes a message. We assume that the

intruder learns the complete signi�cance of each message at the moment that

it is observed. Thus, if the intruder sees a string of bits that is the result of

encrypting a message from A to B with a session key belonging to A and B, he

knows that is what it is, although he will not know either the message or the

key if he has not observed them.

A speci�cation in the Protocol Analyzer describes how one moves from one

state to another via honest participants sending data, honest participants re-

ceiving data, honest participants manipulating stored data, and the intruder's

manipulation of data sent by the honest participants. Honest principals keep

track of where they are in the protocol by means of local state variables. A state

in the Protocol Analyzer is described by some combination of words known by

the intruder, values of local state variables, and sequences of events that have

occurred some time in the past. One uses the NRL Protocol Analyzer by spec-

ifying an insecure state and attempting to prove it unreachable. This is done

by reducing the state space to a manageable size by proving a set of inductive

lemmas about the unreachability of in�nite classes of states and then performing

an exhaustive search on the remaining state space. If the state is unreachable,

every path to the state should begin in a state that was proved unreachable. If

a state is reachable, the Analyzer should generate a path to the state. One can

use the Protocol Analyzer to prove that requirements stated in the requirements

language are satis�ed by mapping action terms to Protocol Analyzer events. One

then replaces each requirement by its negation and attempts to prove that the

state speci�ed by the negation is not reachable.



4 Two party, one server key distribution protocols

4.1 Requirements for one time authentication protocols

We begin with the requirements for a key distribution protocol with a single key

server. We restrict outselves to the case in which there are two parties involved

in obtaining keys, one who initiates the protocol, who we designate as the ini-

tiator, and the other, who we designate as the receiver. The server can be either

a separate entity, or the initiator or receiver. For this set of requirements, we

assume that the server (given that he is distinct from the two principals) is hon-

est. Individuals attempting to communicate may be either honest or dishonest.

However, we only consider requirements for communication between two honest

principals together with an honest server. This is because, under our assump-

tions, if any party is dishonest, they will share the key with the intruder, and so

the fundamental requirement of key secrecy will not be satis�ed.1

There are some obvious requirements on such a protocol. First of all, if a key

is accepted by an honest principal for communication with another honest prin-

cipal, it should not be learned by the intruder, either before or after the accept

event, unless as a result of some key compromise that is outside the scope of

the protocol. Secondly, replays of old keys should be avoided. Thus, if a key is

accepted for communication by honest principal A with honest principal B, it

should not have been accepted in the past, except possibly by B for communi-

cation with A. Thirdly, if a key has been accepted for communication between

A and B, then it should have been generated by a server for use between A

and B. Finally, we make the more subtle requirement that, if A or B accept a

key for conversation with the other and with A as an initiator, then A did in

fact initiate the conversation. Thus, A and B cannot be tricked into having a

conversation that neither one of them initiated.

We begin by describing the various event statements that are involved in

informal requirements that we have stated so far. They are as follows.

{ Initiator A requests to talk to receiver B:

request(user(A; honest); user(B; Y ); ();M )

{ Server S sends a key K for communication between A and B:

send(S; user(A;X); user(B; Y );K;M )

{ Initiator A accepts a key for conversation with receiver B:

init accept(user(A; honest); user(B; Y );K;M )

{ Receiver B accepts a key for conversation with initiator A:

rec accept(user(B; honest ); user(A;X);K;M )

{ Penetrator P learns a key:

learn(P; ();K;M )

{ Key is compromised:

compromise(environment; ();K;M )

1 In other cases, for example in our analysis of some resource-sharing protocols, we

develop requirements for the interaction of an honest principal with a possibly dis-

honest principal.



We can now set forth the requirements2:

1. If a key has been accepted, it should not be learned by the intruder, except

through a compromise event:

3- (init accept(user(A; honest); user(B; honest);K;M1)_

rec accept(user(B; honest ); user(A; honest);K;M2))!

3- (learn(pen; ();K;M?)! 3- compromise(environment; ();K;M?))

2. If a key is accepted for communication between two parties, it should

not have been accepted in the past, except by the other party. This becomes

two requirements, one for the initiator and one for the receiver. Since these

requirements are mirror images of each other, we present only the requirement

for the initiator:

init accept(user(A; honest); user(B; honest );K;M1)!

:(3- init accept(user(C; honest); user(D;X);K;M?)^

(3- rec accept(user(C; honest); user(D;X);K;M?)! (C = B ^D = A))

3. If a key is accepted for communication between two entities, then it must

have been requested by the initiating entity and sent by a server for communica-

tion between those two entities. Again, this becomes two requirements, one for

the initiator and one for the receiver.

init accept(user(A; honest); user(B; honest );K;M1)!

3- (send(S; (user(A; honest); user(B; honest ));K;M?)^

3- request(user(A; honest ); user(B; honest); ();M1))

rec accept(user(B; honest ); user(A; honest);K;M2)!

3- (send(S; (user(A; honest); user(B; honest ));K;M?)^

3- request(user(A; honest ); user(B; honest); ();M?))

4.2 Requirements for repeated authentication

Recently a number of protocols have been proposed that explicitly include reau-

thentication of principals to use a previously distributed session key. ([5], [8],

[12]) When session keys can safely be used for more than the length of a single

session these protocols provide reauthentication with fewer messages than the

number required for initial distribution and require fewer session keys to be gen-

erated (by allowing reuse). This cuts down on expense in communication and

computation.More importantly, a server is only required for the initial exchange;

none is necessary for reauthentication.

Since these protocols may be less familiar than those addressed in the last

section, we give an example of one, taken from [12]. This example will also be

2 In all requirements, `M?' is not really a variable and does not require uniform sub-

stitution of round numbers.



used later to demonstrate speci�c protocol analysis. It is typical of such protocols

in that it produces a ticket in the initial exchange to be used during subsequent

authentication. It is derived from the protocols KSL and NS, presented in [5]

and [8] respectively.

Modi�ed Neuman-Stubblebine protocol

Initial exchange

(1) A sends to B: A;Na

(2) B sends to S: B; fA;Na; TbgKbs
; Nb

(3) S sends to A: fB;Na;Kab; TbgKas
; fA;Kab; TbgKbb

; Nb

(4) A sends to B: fA;Kab; TbgKbb
; fNbgKab

The initial exchange is straightforward: it is similar to single round key distri-

bution protocols, and we mostly use standard notation here. A and B are the

two principals, and S is the server. Nx is a nonce generated by X and used by

X to determine freshness. Kxy is a key to be used exclusively for communica-

tion between X and Y and assumed to be known only to them or those they

trust. `fMessagegK' represents a message encrypted with K, where Message is

the corresponding cleartext. `Tx' usually indicates a timestamp generated by X.

Here we use Tb to determine the expiration time of the ticket, fA;Kab; TbgKbb
,

and associated session key, Kab. This ticket can be used for subsequent authen-

tication. Following Kehne et al., we use `Kbb' to represent a key used exclusively

to produce a ticket to be checked only by B. Not following Kehne et al., the

ticket key is assumed to be known to the server as well as to B. However, the

server is expected to use it only for this purpose. And, B is expected to be able

to detect the error should he receive either a putative ticket encrypted with Kbs

or a non-ticket encrypted with Kbb. We now give the subsequent authentication

part of the protocol.

Subsequent authentication

(10) A sends to B: N 0

a; fA;Kab; TbgKbb

(20) B sends to A: N 0

b; fN
0

agKab

(30) A sends to B: fN 0

bgKab

In the �rst message, A generates a new nonce and sends this to B, along with

the ticket from the initial exchange. B then checks the expiration time of the

ticket. If the key is still good he generates his own new nonce, which he sends to

A. He also sends her back the nonce she generated encrypted with the session

key. Since this key is used only by A and B and since she knows the nonce is

fresh, upon her receiving this, B will be authenticated to A. Finally, A encrypts

B's nonce with the session key and sends it back to him, thus authenticating A

to B. We will return to look at this protocol in more detail below.

The requirements set out above are for protocols where the distributed key

is only to be used for one session. While these requirements may be generically



adequate for the initial exchange of a protocol allowing repeated authentication,

further requirements are necessary for the subsequent authentication subpro-

tocol. Also necessary is a small but signi�cant change to handle the subtleties

introduced to our notion of currency by such protocols. Until recently the pri-

mary approach to currency, i.e. connection to a particular protocol round, has

been via authentication and freshness. One showed that a message was both

recent and originated by the correct principal in order to show currency to a

given round.3 Recently, a number of papers have shown how to interleave mes-

sages from simultaneous rounds to produce attacks. (Cf., e.g., [1], [3], [9], [11].)

Against such interleaving attacks freshness is no guarantee of currency.

The matter only becomes more complex for repeat authentication protocols.

These protocols need to be concerned simultaneously with currency within a

round and currency to a class of rounds: we must make sure that the messages

involved in the reauthentication are current and that the session key involved

is also current. These are two di�erent judgements of currency. For, if currency

is bounded only by connection to the initial exchange, then there is no need for

reauthentication. And, if currency is relative only to the reauthentication, then

the session key is no longer current.

Within a single protocol round, we must be concerned with freedom from

interleaving attacks (whether it is the initial exchange or reauthentication that

is executed). However, across multiple reauthentications of a given protocol such

concern may or may not be important. For, if two principals were to have more

than one ticket currently acceptable for potential reauthentication, there may be

no problem in a random choice of either one to begin a round. In this case, there

can be no question of interleaving because there is no notion of a single round

across repeated authentications. On the other hand, if we wanted to reserve spe-

ci�c multisession keys for particular types of communication between principals,

then we could conceivably have interleaving attacks: a principal could be tricked

into using a key for one class of communication that was meant for another. We

make some small adjustments to the structure of event statements in order to

allow enough exibility to express the types of requirements germane to these

issues.

The event statements have the usual format of an action symbol with four

arguments. The fourth argument, for round numbers, now is of the form N:M .

TheM indicates the local round number as before. The N indicates an extended

local round number, which may or may not be required to stay the same across

repeated authentications. In order to address currency of the session key, the

third argument is now an ordered pair, e.g., (K;T ). This gives both a key and

an expiration time. Note that in the following event statements metalinguistic

use of `initiator' refers to the initiator of subsequent authentication, who need

not be the initiator of the initial exchange. Similarly for `receiver'. In addition to

the previous event statements, appropriately reformatted, we have the following.

3 We use `current' as an attempt at a neutral term meaning connected in some appro-

priate sense to given protocol round(s).



{ Reauthentication initiator A requests a subsequent session with receiver B:

rerequest(user(A; honest); user(B; Y ); (); N:M )

{ Reauthentication initiator A accepts a key for a subsequent conversation

with receiver B:

init reaccept(user(A; honest); user(B; Y ); (K;T ); N:M )

{ Reauthentication receiver B accepts a key for subsequent conversation with

initiator A:

rec reaccept(user(B; honest ); user(A;X); (K;T ); N:M )

{ Session key is assessed to have timed-out by principal A:

timeout(user(A; honest); user(X;Y ); (K;T ); N:M )

It might seem that in order for a principal to accept a key for a subsequent

session we should require that it was properly requested for initial exchange,

sent by the server, etc. Much of this can be accomplished, however, simply by

requiring that for a principal to reaccept a key he should have accepted it in a

previous session. This will in turn force all the requirements that such acceptance

implies. We can thus focus exclusively on the requirements for the reacceptance

of the key.

The requirements are then as follows:

1. If a key has been accepted for subsequent use, it should not be learned by

the intruder, except through a compromise event. (This is virtually the same as

requirement 1 of the last section.)

3- (init reaccept(user(A; honest); user(B; honest ); (K;T ); N1:M1)_

rec reaccept(user(B; honest ; user(A; honest); (K;T ); N2:M2))!

3- (learn(pen; ();K;M?)! 3- compromise(environment; ();K;M?))

2. If a key is accepted for subsequent use, then it should have been previously

accepted by both principals in an initial exchange. As above, this yields two

requirements, one for the initiator and one for the receiver. Since one is the

mirror image of the other, we only give the �rst of these requirements.

init reaccept(user(A; honest); user(B; honest ); (K;T ); N1:M1)!

(3- (init accept(user(A; honest ); user(B; honest); (K;T ); N1:M?)^

3- rec accept(user(B; honest ); user(A; honest); (K;T ); N?:M?))_

(3- (rec accept(user(A; honest); user(B; honest ); (K;T ); N1:M?)^

3- (init accept(user(B; honest ); user(A; honest); (K;T ); N?:M?))

3. If a key is accepted for subsequent use, then a subsequent session must be

requested by the initiator:

init reaccept(user(A; honest); user(B; honest ); (K;T ); N1:M1)!

3- rerequest(user(A; honest); user(B; honest ); (K;T ); N1:M1))

rec reaccept(user(B; honest ); user(A; honest); (K;T ); N2:M2)!

3- rerequest(user(A; honest); user(B; honest ); (K;T ); N?:M?))



This requirement assumes that the request is for authenticating a particular key.

If we need only that the request is for the authentication is for some current key

we have:

init reaccept(user(A; honest ); user(B; honest); (K;T ); N1:M1)!

3- rerequest(user(A; honest); user(B; honest ); (); N1:M1))

rec reaccept(user(B; honest); user(A; honest); (K;T ); N2:M2)!

3- rerequest(user(A; honest); user(B; honest ); (); N?:M?))

4. If a key is accepted for subsequent use, it should not have previously

expired:

init reaccept(user(A; honest ); user(B; honest); (K;T ); N1:M1)!

:(3- timeout(user(A; honest); user(X;Y ); (K;T ); N?:M?)))

rec reaccept(user(B; honest); user(A; honest); (K;T ); N2:M2)!

:(3- timeout(user(B; honest ); user(X;Y ); (K;T ); N?:M?)))

5 Analysis of a Modi�ed Version of the NS Protocol

In this section we describe how we applied the set of requirements developed in

this paper to use the NRL Protocol Analyzer to evaluate a version of the reau-

thentication protocol of Neuman and Stubblebine [8]. This lead to the discovery

of an implementation-dependent aw similar to the one found in [12] and [2], as

well as of an attack that pointed out a place where our requirements might be too

stringent. As in the earlier case, the discovery of an implementation-dependent

aw does not mean that implementations of the protocol are necessarily or even

likely to be awed, but rather that there is a hidden assumption in the speci�-

cation whose violation would cause a security aw. In this case, as in the aw

discovered in [12] and [2], the hidden assumption is that the principals have the

ability to recognize di�erent types of data, such as keys, nonces, and timestamps.

In [12] and [2] an attack was found on the Neuman-Stubblebine protocol

which depends upon the receiver's inability to distinguish a nonce from a key.

We do not present the attack here, but note that it depends upon the receiver's

confusing the message it generates in the second step in the protocol with the

message it receives in the fourth step. It was conjectured in [12] that this attack

could be foiled by using two di�erent encryption keys for the two messages.

Thus each principal B would share two keys with the server, Kbs and Kbb. We

attempted to verify this claim by applying the NRL Protocol Analyzer to the

requirements set forth in this paper. What we found was that, although the

attack on the receiver's key no longer succeeded, it was possible to mount a

similar attack on the initiator's key.

We did this by specifying the modi�ed Neuman-Stubblebine protocol and

ran the the NRL Protocol Analyzer on the requirement that, if a key is accepted



as good by the sender, then it must have been requested by the sender and

subsequently generated by a key server.

We attempted to verify that the protocol satis�ed this requirement by show-

ing that the negation of the requirement was unreachable. In other words, we

attempted to show that there was no path to the state in which the initiator of

the protocol had accepted a key as good, but in which the sequence in which

the initiator requested a key and the key server had generated the key did not

occur. The Analyzer was able to generate the following path by which such a

state could be reached.

(1) A sends to Eb: A;Na

(1�) Eb sends to A:B;Na

(2�) A sends to Es:A; fB;Na; TagKas
; N 0

a

(2) Omitted.

(3) Es sends to A: fB;Na; Ta(= fKab; Tbg)gKas
; Garbage1; Garbage2

The attack is subtle, and makes use of the interleaving of two instances of

the protocol, one initiated by A with B, and one initiated by the intruder acting

as B attempting to initiate an instance of the protocol with A. In (1), A sends a

message to B initiating a session with B. This is intercepted by the intruder E. In

(1�), E impersonating B attempts to initiate a session with A, this time sending

Na as B's nonce. In (2
�), A encrypts B's message together with a timestamp and

forwards it to S. This message is also intercepted by E. In (3), E forwards the

encrypted message from (2�) as if it were the server's response to B's response

to A's initial message. The last two parts of the message are not used by A, so

E can substitute anything she likes. A decrypts the message and checks for the

nonce. She then assumes that Ta must be fKab; Tbg.

We also ran the Protocol Analyzer on the same requirement from the point

of view of a receiver B. In this case we were able to prove that, if B accepts a

word as a key, then that word must have been generated as a key by a key server.

In other words, B cannot be fooled into accepting a piece of a timestamp as a

key. However, if the intruder E is able to �nd out the timestamp, then E can

use Ta to impersonate B to A. Since timestamps may not be as well protected

as keys, this may be possible.

The success of the attack we found with the Protocol Analyzer relies upon a

number of assumptions which may or may not hold in the actual implementation

of the protocol. The �rst of these is that timestamps are of variable length. In

the last step, A must be able to confuse a timestamp with a key concatenated

with a timestamp. The second assumption is that the initiator of a protocol does

not check a timestamp generated by the receiver. Again, this is not speci�ed by

Neuman and Stubblebine, but one could imagine cases in which the receiver

would want to check a timestamp in order to avoid replying to messages that

are obviously out of date. Finally, we must assume that there is no way A can

distinquish between keys and timestamps. Thus, for example, there is no �eld in

a message to tell A whether to expect the next �eld to be a timestamp or a key.



In spite of the fact that it is not likely that a particular implementation will

satisfy all these assumptions, knowledge of this attack can be of help in our

attempt to gain understanding of how to design a protocol for security. It can

tell us which assumptions we should be careful about relaxing for fear of opening

up a protocol to attack, and it can tell us which features are relevant to security,

and thus should be protected against subversion by a hostile intruder. Thus,

for example, any typing mechanism used in an implementation of the Neuman-

Stubblebine protocol is relevant to the security of that protocol, and we must

be careful to ensure that the mechanism is strong enough so that an intruder

cannot cause a message of one type to be passed o� as a message of another.

Our analysis of the requirements on the conditions under which the receiver

will accept a key turned up another attack, although in this case the attack

pointed to a place in which the requirement may be too stringent, rather than

a aw in the protocol itself. It was found that if a compromise event occurs

right after the server generates a key, the intruder can cause a receiver B to

accept a key as coming from a sender A even though A never requested it: the

intruder requests the key while pretending to be A, waits for S to send the key,

compromises the key, and then impersonates A to B by proving knowledge of

the key in the �nal step. We note, however, that although such an attack could

be prevented, it is probably not worthwhile to do so. In general, protocols are

designed to be secure against compromise of keys outside of a given round, not

within a round. For example, there is no way to recover against an intruder's

compromising a key during a session except to generate a new session key. Thus

our discovery of this \attack" shows us that our requirement is too stringent,

and it should be modi�ed to one of the following form:

rec accept(user(B; honest ); user(A; honest);K;M2)^

:(3- (compromise(environment; ();K;M?)))!

3- (send(S; (user(A; honest); user(B; honest ));K;M?)^

3- request(user(A; honest ); user(B; honest); ();M?))

6 Conclusion

In this paper we have shown how a requirements language based on temporal

logic can be of assistance in the speci�cation and veri�cation of cryptographic

protocols. One of the disadvantages of currently available logical languages for

cryptographic protocol analysis is that for the most part each protocol has its

own speci�cation. Our approach goes some way towards a remedy by allowing

a single set of requirements to specify a whole class of protocols. This has the

advantage that a protocol analyst can largely identify the goals of any protocol

in this class with that one speci�cation, which seems to be a fairly intuitive way

to view things. Once the general class of protocol requirements has been iden-

ti�ed, it is possible to �ne-tune the requirements for the particular application.

This is what we have done in this paper. We �rst gave a general set of require-

ments for key distribution protocols involving a key server. We then showed how



the requirements should be augmented to handle key reauthentication. Finally,

we showed how the key reauthentication requirements could be modi�ed to ex-

press or leave out the requirement for binding reauthenticated keys to the initial

communication, depending whether or not this was needed.

Once we have developed a set of requirements, we can use them together

with a formal analysis of a particular protocol both to help us to understand

the strengths and weaknesses of the protocol better and to help us improve our

understanding of the requirements. In our analysis of the modi�ed Neuman-

Stubblebine protocol with the NRL Protocol Analyzer, we were able to make

progress in both of these areas. Thus we have provided evidence for the usefulness

of our approach.

References

1. Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Re�k Molva,
and Moti Yung. Systematic Design of Two-Party Authentication Protocols. In

Joan Feigenbaum, editor, Advances in Cryptology | CRYPTO `91, volume 576 of

Lecture Notes in Computer Science. Springer Verlag, Berlin, 1992.
2. Ulf Carlsen. Using Logics to Detect Implementation-Dependent Flaws. In Pro-

ceedings of the Ninth Annual Computer Security Applications Conference, pages

64{73. IEEE Computer Society Press, Los Alamitos, California, December 1993.
3. Whit�eld Di�e, Paul C. van Oorschot, and Michael J. Wiener. Authentication

and Authenticated Key Exchanges. Designs, Codes, and Cryptography, 2:107{125,

1992.
4. D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE Transactions

on Information Theory, 29(2):198{208, March 1983.

5. Kehne, Sch�onw�alder, and Langend�orfer. A Nonce-Based Protocol for Multiple
Authentications. Operating Systems Review, 26(4):84{89, October 1992.

6. Richard Kemmerer, Catherine Meadows, and Jonathan Millen. Three Systems for

Cryptographic Protocol Analysis. Journal of Cryptology, 7(2), 1994.
7. C. Meadows. Applying Formal Methods to the Analysis of a Key Management

Protocol. Journal of Computer Security, 1:5{53, 1992.

8. B. Cli�ord Neuman and Stuart G. Stubblebine. A Note on the Use of Timestamps
as Nonces. Operating Systems Review, 27(2):10{14, April 1993.

9. Einar Snekkenes. Roles in Cryptographic Protocols. In Proceedings of the 1992

IEEE Computer Society Symposium on Research in Security and Privacy. IEEE

Computer Society Press, Los Alamitos, California, 1992.

10. Paul Syverson and Catherine Meadows. A Logical Language for Specifying Cryp-

tographic Protocol Requirements. In Proceedings of the 1993 IEEE Computer

Society Symposium on Research in Security and Privacy, pages 165{177. IEEE

Computer Society Press, Los Alamitos, California, 1993.

11. Paul F. Syverson. Adding Time to a Logic of Authentication. In Proceedings of the
First ACM Conference on Computer and Communications Security, pages 97{101.

ACM Press, New York, November 1993.

12. Paul F. Syverson. On Key Distribution Protocols for Repeated Authentication.
Operating Systems Review, 27(4):24{30, October 1993.

This article was processed using the LTEX macro package with LLNCS style


